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Motivation
Estimation of contaminant travel time in the unsaturated zone is important for assessing aquifer vulnerability, delineating

wellhead protection zones, planning monitoring and remediation, predicting the effects of land use and climate
change.on groundwater quality.
Travel time can be computed using several methods of varying complexity, based on either transient or steady flow

assumption, but comparative studies are limited.

Objectives

« Comparison of numerical simulations of transient flow and advective-dispersive transport with simple methods based
on the assumptions of steady state flow and advective transport

« Evaluting the role of the hydrodynamic dispersion and root zone influence on conservative contamination travel time
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Numerical modeling of transient flow and transport
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Volumetric water content profiles obtained from HYDRUS-1D simulations for profile | (bare sand), profile Il (sand with grass cover),

profile Il (bare clay loam)and profile IV (clay loam with grass cover).

Quantity Sand-bare Sand-grass Clay loam-bare Clay loam-grass
Mean annual recharge [mm,/yr] 336 154 121 31
Fechage / precipitation ratio [-] 0.61 0.28 0.22 0.06

The average annual values of recharge (Tab. 2) computed by HYDRUS-1D show very significant influence of the vegetative cover,

which reduces the recharge by a factor of about 2 for sand and about 4 for clay loam.

Parameters Sand-bare Sand-grass  Clay loam-bare = Clay loam-grass
or=0.60 m, c=0.01 mg/cm3 81 102 1060 3898
o1 =0.60m, c=0.99 mg/cm? 620 803 3362 8419
or=0.06 m, c=0.01 mg/cm3 398 801 2669 7864
oL =0.06 m, ¢ =0.99 mg/cm? 628 846 3918 11329

The early appearance of contaminant at the water table (¢ = 0.01 mg/dm3) is strongly influenced by the dispersion coefficient (Tab. 3),
especially in sand where the travel time is 5 to 8 times shorter for large dispersion case compared to the small dispersion case. For
clay loam the differences are smaller, but still very significant, with the difference in travel time by a factor of 2. On the other hand the

differences in arrival time of the high concentration (¢ = 0.99 mg/dms3) are much less significant and do not exceed 35%.

Profile Sand-bare Sand-crass Clay loam-bare  Clay loam-grass
steady flow 590 1184 5830 21384
hyvdrostatic 357 779 5237 20441

The hydrostatic profile assumption results in shorter travel times (Tab. 4), however the differences are not very big. The largest relative

difference between the steady flow and hydrostatic case occurs for bare sand, the smallest one for vegetated clay loam.

Equation Sand-bare Sand-grass Clay loam-bare  Clay loam-grass
(4) (Witczak and Zurek 1994) 455 - 649 200 — 1285 4360 — 5813 16841 — 22455
(3) (Charbeneau and Daniel 1993) 589 1176 5011 17675
(6) (Macioszczvk 1999) 23 -33 33-30 827 - 1182 1840 — 2642
(7) (Bindemann, cited in Szestakow 66 — 127 112 - 214 319 — 940 784 — 2461

and Witczak 1984)

Travel times calculated with analytical methods vary greatly between the formulas (Tab. 5). For sand Eq (4) seems to be in a relatively
good agreement with the results from transient simulations (small dispersion case). For clay loam the estimated travel time was
significantly longer than the one obtained from HYDRUS-1D, especially in the case of vegetation. The method of Charbeneau and
Daniel (1993) gave travel times within the range predicted by Eq. (4). In contrast, both Eq. (6) | Eq. (7) in all scenarios gave travel
times much shorter than the ones computed from HYDRUS-1D and other methods. For sand Eq. (6) leads to the shortest travel times,

because the volumetric water content is smaller than the effective porosity used in Eq. (7). For clay loam, if one uses small values of

the effective porosity, as commonly reported in the literature, Eq. (7) predicts shorter time lag than Eq. (6).

Analytical methods
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Conclusions

s Groundwater recharge flux strongly depends on the presence of root zone, for either sand or clay
loam. Consequently, the travel time of pollutant also is affected by the presence of root zone.

s The assumed dispersion constant have significant influence on the arrival time of contaminant at the
water table, which seems to be important in view of the widespread calculation of travel time based
on the assumption of purely advective flow.

s The methods using steady flow approximation showed mixed performance, even though it was
assumed that the exact value of average groundwater recharge is known for each soil profile. Care
should be taken if simple analytical formulas are to be used to estimate unsaturated zone travel time.
In view of the growing computer capacities and availability of simulation software and parameter data,
it seems advisable that numerical simulations are used for at least partial comparisons with the

analytical results.
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